Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Heliyon ; 10(6): e27472, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496880

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) polymorphisms are associated with increased risk of type 2 diabetes mellitus (T2DM), obesity and dyslipidemia, which have been determined in various populations. Consistently, ACE2 knockout (ACE2 KO) mice display damaged energy metabolism in multiple tissues, especially the key metabolic tissues such as liver, skeletal muscle and epididymal white adipose tissue (eWAT) and show even more severe phenotype under high-fat diet (HFD) induced metabolic stress. However, the effects of ACE2 on global metabolomics profiling and the tissue sensitivity remain unclear. To understand how tissues independently and collectively respond to ACE2, we performed untargeted metabolomics in serum in ACE2 KO and control wild type (WT) mice both on normal diet (ND) and HFD, and in three key metabolic tissues (liver, skeletal muscle and eWAT) after HFD treatment. The results showed significant alterations in metabolic profiling in ACE2 KO mice. We identified 275 and 168 serum metabolites differing significantly between WT and ACE2 KO mice fed on ND and HFD, respectively. And the altered metabolites in the ACE2 KO group varied from 90 to 196 in liver, muscle and eWAT. The alterations in ND and HFD serum were most similar. Compared with WT mice, ACE2 KO mice showed an increase in N-phenylacetylglutamine (PAGln), methyl indole-3-acetate, 5-hydroxytryptophol, cholic acid, deoxycholic acid and 12(S)-HETE, while LPC (19:0) and LPE (16:1) decreased. Moreover, LPC (20:0), LPC (20:1) and PC (14:0e/6:0) were reduced in both ND and HFD serum, paralleling the decreases identified in HFD skeletal muscle. Interestingly, DL-tryptophan, indole and Gly-Phe decreased in both ND and HFD serum but were elevated in HFD liver of ACE2 KO mice. A low level of l-ergothioneine was observed among liver, muscle, and epididymal fat tissue of ACE2 KO mice. Pathway analysis demonstrated that different tissues exhibited different dysregulated metabolic pathways. In conclusion, these results revealed that ACE2 deficiency leads to an overall state of metabolic distress, which may provide a new insight into the underlying pathogenesis in metabolic disorders in both ACE2 KO mice and in patients with certain genetic variant of ACE2 gene.

2.
Microorganisms ; 12(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543666

ABSTRACT

Arthrobotrys oligospora, a widespread nematode-trapping fungus which can produce conidia for asexual reproduction and form trapping devices (traps) to catch nematodes. However, little is known about the sporulation mechanism of A. oligospora. This research characterized the functions and regulatory roles of the upstream spore-producing regulatory genes, AosfgA and AofluG, in A. oligospora. Our analysis showed that AosfgA and AofluG interacted with each other. Meanwhile, the AofluG gene was downregulated in the ΔAosfgA mutant strain, indicating that AosfgA positively regulates AofluG. Loss of the AosfgA and AofluG genes led to shorter hyphae and more septa, and the ΔAosfgA strain responded to heat and chemical stresses. Surprisingly, the number of nuclei was increased in the mycelia but reduced in the conidia of the ΔAosfgA and ΔAofluG mutants. In addition, after nematode induction, the number and volume of vacuoles were remarkably increased in the ΔAosfgA and ΔAofluG mutant strains. The abundance of metabolites was markedly decreased in the ΔAosfgA and ΔAofluG mutant strains. Collectively, the AosfgA and AofluG genes play critical roles in mycelial development, and they are also involved in vacuole assembly, the stress response, and secondary metabolism. Our study provides distinct insights into the regulatory mechanism of sporulation in nematode-trapping fungi.

3.
J Fungi (Basel) ; 10(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38392782

ABSTRACT

Prdx2 is a peroxiredoxin (Prx) family protein that protects cells from attack via reactive oxygen species (ROS), and it has an important role in improving the resistance and scavenging capacity of ROS in fungi. Arthrobotrys oligospora is a widespread nematode-trapping fungus that can produce three-dimensional nets to capture and kill nematodes. In this study, AoPrdx2, a homologous protein of Prx5, was investigated in A. oligospora via gene disruption, phenotypic analysis, and metabolomics. The deletion of Aoprdx2 resulted in an increase in the number of mycelial septa and a reduction in the number of nuclei and spore yield. Meanwhile, the absence of Aoprdx2 increased sensitivity to oxidative stresses, whereas the ∆Aoprdx2 mutant strain resulted in higher ROS levels than that of the wild-type (WT) strain. In particular, the inactivation of Aoprdx2 severely influenced trap formation and pathogenicity; the number of traps produced by the ∆Aoprdx2 mutant strain was remarkably reduced and the number of mycelial rings of traps in the ∆Aoprdx2 mutant strain was less than that of the WT strain. In addition, the abundance of metabolites in the ∆Aoprdx2 mutant strain was significantly downregulated compared with the WT strain. These results indicate that AoPrdx2 plays an indispensable role in the scavenging of ROS, trap morphogenesis, and secondary metabolism.

4.
Cell Mol Life Sci ; 81(1): 86, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349432

ABSTRACT

Glucose-stimulated insulin secretion (GSIS) in pancreatic islet ß-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on ß-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with ß-cell-specific KCNH6 knockout (ßKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-ßKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.


Subject(s)
Exocytosis , Insulin , Animals , Mice , Electrophysiological Phenomena , Glucose , Insulin Secretion
5.
FASEB J ; 38(4): e23490, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38363581

ABSTRACT

Appropriate Ca2+ concentration in the endoplasmic reticulum (ER), modulating cytosolic Ca2+ signal, serves significant roles in physiological function of pancreatic ß cells. To maintaining ER homeostasis, Ca2+ movement across the ER membrane is always accompanied by a simultaneous K+ flux in the opposite direction. KCNH6 was proven to modulate insulin secretion by controlling plasma membrane action potential duration and intracellular Ca2+ influx. Meanwhile, the specific function of KCNH6 in pancreatic ß-cells remains unclear. In this study, we found that KCNH6 exhibited mainly ER localization and Kcnh6 ß-cell-specific knockout (ßKO) mice suffered from abnormal glucose tolerance and impaired insulin secretion in adulthood. ER Ca2+ store was overloaded in islets of ßKO mice, which contributed to ER stress and ER stress-induced apoptosis in ß cells. Next, we verified that ethanol treatment induced increases in ER Ca2+ store and apoptosis in pancreatic ß cells, whereas adenovirus-mediated KCNH6 overexpression in islets attenuated ethanol-induced ER stress and apoptosis. In addition, tail-vein injections of KCNH6 lentivirus rescued KCNH6 expression in ßKO mice, restored ER Ca2+ overload and attenuated ER stress in ß cells, which further confirms that KCNH6 protects islets from ER stress and apoptosis. These data suggest that KCNH6 on the ER membrane may help to stabilize intracellular ER Ca2+ stores and protect ß cells from ER stress and apoptosis. In conclusion, our study reveals the protective potential of KCNH6-targeting drugs in ER stress-induced diabetes.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Mice , Animals , Insulin Secretion , Diabetes Mellitus/metabolism , Insulin-Secreting Cells/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Calcium/metabolism , Ethanol , Insulin/metabolism
6.
J Adv Res ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38331317

ABSTRACT

INTRODUCTION: Arthrobotrys oligospora has been utilized as a model strain to study the interaction between fungi and nematodes owing to its ability to capture nematodes by developing specialized traps. A previous study showed that high-osmolarity glycerol (Hog1) signaling regulates the osmoregulation and nematocidal activity of A. oligospora. However, the function of downstream transcription factors of the Hog1 signaling in the nematode-trapping (NT) fungi remains unclear. OBJECTIVE: This study aimed to investigate the functions and potential regulatory network of AoMsn2, a downstream transcription factor of the Hog1 signaling pathway in A. oligospora. METHODS: The function of AoMsn2 was characterized using targeted gene deletion, phenotypic experiments, real-time quantitative PCR, RNA sequencing, untargeted metabolomics, and yeast two-hybrid analysis. RESULTS: Loss of Aomsn2 significantly enlarged and swollen the hyphae, with an increase in septa and a significant decrease in nuclei. In particular, spore yield, spore germination rate, traps, and nematode predation efficiency were remarkably decreased in the mutants. Phenotypic and transcriptomic analyses revealed that AoMsn2 is essential for fatty acid metabolism and autophagic pathways. Additionally, untargeted metabolomic analysis identified an important function of AoMsn2 in the modulation of secondary metabolites. Furtherly, we analyzed the protein interaction network of AoMsn2 based on the Kyoto Encyclopedia of Genes and Genomes pathway map and the online website STRING. Finally, Hog1 and six putative targeted proteins of AoMsn2 were identified by Y2H analysis. CONCLUSION: Our study reveals that AoMsn2 plays crucial roles in the growth, conidiation, trap development, fatty acid metabolism, and secondary metabolism, as well as establishes a broad basis for understanding the regulatory mechanisms of trap morphogenesis and environmental adaptation in NT fungi.

7.
Mol Metab ; 80: 101885, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246588

ABSTRACT

OBJECTIVE: Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic ß-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS: We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic ß cell line to identify genes associated with insulin secretion. RESULTS: The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with ß-cell-specific deletion of Kcnh6. CONCLUSIONS: Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.


Subject(s)
Insulin , Lysine , Mice , Animals , Insulin Secretion , Lysine/metabolism , Insulin/metabolism , Glucose/pharmacology , Adenosine Triphosphate/metabolism
8.
Microbiol Res ; 280: 127573, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103468

ABSTRACT

Rab GTPases regulate vesicle trafficking in organisms and play crucial roles in growth and development. Arthrobotrys oligospora is a ubiquitous nematode-trapping (NT) fungus, it can form elaborate traps to capture nematodes. Our previous study found that deletion of Aorab7A abolished the trap formation and sporulation. Here, we investigated the regulatory mechanism of AoRab7A using transcriptomic, biochemical, and phenotypic comparisons. Transcriptome analysis, yeast library screening, and yeast two-hybrid assay identified two vacuolar protein sorting (Vps) proteins, AoVps41 and AoVps35, as putative targets of AoRab7A. The deletion of Aovps41 and Aovps35 caused considerable defects in multiple phenotypic traits, such as conidiation and trap formation. We further found a close connection between AoRab7A and Vps proteins in vesicle-vacuole fusion, which triggered vacuolar fragmentation. Further transcriptome analysis showed that AoRab7A and AoVps35 play essential roles in many cellular processes and components including proteasomes, autophagy, fatty acid degradation, and ribosomes in A. oligospora. Furthermore, we verified that AoRab7A, AoVps41, and AoVps35 are involved in ribosome and proteasome functions. The absence of these proteins inhibited the biosynthesis of nascent proteins and enhanced ubiquitination. Our findings suggest that AoRab7A interacts with AoVps41 and AoVps35 to mediate vacuolar fusion and influence lipid droplet accumulation, autophagy, and stress response. These proteins are especially required for the conidiation and trap development of A. oligospora.


Subject(s)
Ascomycota , Nematoda , Proteasome Endopeptidase Complex , Animals , Vacuoles , Saccharomyces cerevisiae , Ribosomes
9.
Front Microbiol ; 14: 1235283, 2023.
Article in English | MEDLINE | ID: mdl-37779704

ABSTRACT

The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.

10.
Appl Environ Microbiol ; 89(9): e0098323, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37655869

ABSTRACT

The asexual sporulation of filamentous fungi is an important mechanism for their reproduction, survival, and pathogenicity. In Aspergillus and several filamentous fungi, BrlA, AbaA, and WetA are the key elements of a central regulatory pathway controlling conidiation, and MedA is a developmental modifier that regulates temporal expression of central regulatory genes; however, their roles are largely unknown in nematode-trapping (NT) fungi. Arthrobotrys oligospora is a representative NT fungus, which can capture nematodes by producing adhesive networks (traps). Here, we characterized the function of AoMedA and three central developmental regulators (AoBrlA, AoAbaA, and AoWetA) in A. oligospora by gene disruption, phenotypic comparison, and multi-omics analyses, as these regulators are required for conidiation and play divergent roles in mycelial development, trap formation, lipid droplet accumulation, vacuole assembly, and secondary metabolism. A combined analysis of phenotypic traits and transcriptome showed that AoMedA and AoWetA are involved in the regulation of peroxisome, endocytosis, and autophagy. Moreover, yeast one-hybrid analysis showed that AoBrlA can regulate AoMedA, AoAbaA, and AoWetA, whereas AoMedA and AoAbaA can regulate AoWetA. Our results highlight the important roles of AoMedA, AoBrlA, AoAbaA, and AoWetA in conidiation, mycelia development, trap formation, and pathogenicity of A. oligospora and provide a basis for elucidating the relationship between conidiation and trap formation of NT fungi. IMPORTANCE Conidiation is the most common reproductive mode for many filamentous fungi and plays an essential role in the pathogenicity of fungal pathogens. Nematode-trapping (NT) fungi are a special group of filamentous fungi owing to their innate abilities to capture and digest nematodes by producing traps (trapping devices). Sporulation plays an important role in the growth and reproduction of NT fungi, and conidia are the basic components of biocontrol reagents for controlling diseases caused by plant-parasitic nematodes. Arthrobotrys oligospora is a well-known NT fungus and is a routinely used model fungus for probing the interaction between fungi and nematodes. In this study, the functions of four key regulators (AoMedA, AoBrlA, AoAbaA, and AoWetA) involved in conidiation were characterized in A. oligospora. A complex interaction between AoMedA and three central regulators was noted; these regulators are required for conidiation and trap formation and play a pleiotropic role in multiple intracellular activities. Our study first revealed the role of AoMedA and three central regulators in conidiation, trap formation, and pathogenicity of A. oligospora, which contributed to elucidating the regulatory mechanism of conidiation in NT fungi and helped in developing effective reagents for biocontrol of nematodes.


Subject(s)
Ascomycota , Nematoda , Animals , Secondary Metabolism , Ascomycota/physiology , Saccharomyces cerevisiae
11.
iScience ; 26(8): 107404, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37609635

ABSTRACT

Mitogen-activated protein kinase (MAPK) Fus3 is an essential regulator of cell differentiation and virulence in fungal pathogens of plants and animals. However, the function and regulatory mechanism of MAPK signaling in nematode-trapping (NT) fungi remain largely unknown. NT fungi can specialize in the formation of "traps", an important indicator of transition from a saprophytic to a predatory lifestyle. Here, we characterized an orthologous Fus3 in a typical NT fungus Arthrobotrys oligospora using multi-phenotypic analysis and multi-omics approaches. Our results showed that Fus3 plays an important role in asexual growth and development, conidiation, stress response, DNA damage, autophagy, and secondary metabolism. Importantly, Fus3 plays an indispensable role in hyphal fusion, trap morphogenesis, and nematode predation. Moreover, we constructed the regulatory networks of Fus3 by means of transcriptomic and yeast two-hybrid techniques. This study provides insights into the mechanism of MAPK signaling in asexual development and pathogenicity of NT fungi.

12.
Microorganisms ; 11(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37375114

ABSTRACT

Multidrug resistance (Mdr) proteins are critical proteins for maintenance of drug resistance in fungi. Mdr1 has been extensively studied in Candida albicans; its role in other fungi is largely unknown. In this study, we identified a homologous protein of Mdr (AoMdr1) in the nematode-trapping (NT) fungus Arthrobotrys oligospora. It was found that the deletion of Aomdr1 resulted in a significant reduction in the number of hyphal septa and nuclei as well as increased sensitivity to fluconazole and resistance to hyperosmotic stress and SDS. The deletion of Aomdr1 also led to a remarkable increase in the numbers of traps and mycelial loops in the traps. Notably, AoMdr1 was able to regulate mycelial fusion under low-nutrient conditions, but not under nutrient-rich conditions. AoMdr1 was also involved in secondary metabolism, and its deletion caused an increase in arthrobotrisins (specific compounds produced by NT fungi). These results suggest that AoMdr1 plays a crucial role in the fluconazole resistance, mycelial fusion, conidiation, trap formation, and secondary metabolism of A. oligospora. Our study contributes to the understanding of the critical role of Mdr proteins in mycelial growth and the development of NT fungi.

13.
Comput Biol Med ; 161: 106967, 2023 07.
Article in English | MEDLINE | ID: mdl-37220707

ABSTRACT

BACKGROUND: With the rapid advancement of medical imaging technology, the demand for accurate segmentation of medical images is increasing. However, most existing methods are unable to capture locality and long-range dependency information in integrated ways for medical images. METHOD: In this paper, we propose an elegant segmentation framework for medical images named TC-Net, which can utilize both the locality-aware and long-range dependencies in the medical images. As for the locality-aware perspective, we employ a CNN-based encoder and decoder structure. The CNN branch uses the locality of convolution operations to dig out local information in medical images. As for the long-range dependencies, we construct a Transformer branch to focus on the global context. Additionally, we proposed a locality-aware and long-range dependency concatenation strategy (LLCS) to aggregate the feature maps obtained from the two subbranches. Finally, we present a dynamic cyclical focal loss (DCFL) to address the class imbalance problem in multi-lesion segmentation. RESULTS: Comprehensive experiments were conducted on lesion segmentation tasks using two fundus image databases and a skin image database. The TC-Net achieves scores of 0.6985 and 0.5171 in the metric of mean pixel accuracy on the IDRiD and DDR databases, respectively. Moreover, on the skin image database, the TC-Net reached mean pixel accuracy of 0.8886. The experiment results demonstrate that the proposed method achieves better performance than other deep learning segmentation schemes. Furthermore, the proposed DCFL achieves higher performance than other loss functions in multi-lesion segmentation. SIGNIFICANCE: The proposed TC-Net is a promising new framework for multi-lesion medical image segmentation and many other challenging image segmentation tasks. © 2001 Elsevier Science. All rights reserved.


Subject(s)
Image Processing, Computer-Assisted , Skin , Databases, Factual , Fundus Oculi
14.
Diabetes Res Clin Pract ; 201: 110723, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209876

ABSTRACT

AIMS: Reports have suggested that COVID-19 vaccination may cause Type 1 diabetes (T1D), particularly fulminant T1D (FT1D). This study aimed to investigate the incidence of T1D in a general population of China, where>90% of the people have received three injections of inactivated SARS-Cov-2 vaccines in 2021. METHODS: A population-based registry of T1D was performed using data from the Beijing Municipal Health Commission Information Center. Annual incidence rates were calculated by age group and gender, and annual percentage changes were assessed using Joinpoint regression. RESULTS: The study included 14.14 million registered residents, and 7,697 people with newly diagnosed T1D were identified from 2007 to 2021. T1D incidence increased from 2.77 in 2007 to 3.84 per 100,000 persons in 2021. However, T1D incidence was stable from 2019 to 2021, and the incidence rate did not increase when people were vaccinated in January-December 2021. The incidence of FT1D did not increase from 2015 to 2021. CONCLUSIONS: The findings suggest that COVID-19 vaccination did not increase the onset of T1D or have a significant impact on T1D pathogenesis, at least not on a large scale.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/epidemiology , Incidence , COVID-19 Vaccines/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , China/epidemiology , Vaccination
15.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108952

ABSTRACT

Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid (TCA) cycle and is essential for energy balance, growth, and tolerance to cold and salt stresses in plants. However, the role of MDH in filamentous fungi is still largely unknown. In this study, we characterized an ortholog of MDH (AoMae1) in a representative nematode-trapping (NT) fungus Arthrobotrys oligospora via gene disruption, phenotypic analysis, and nontargeted metabolomics. We found that the loss of Aomae1 led to a weakening of MDH activity and ATP content, a remarkable decrease in conidia yield, and a considerable increase in the number of traps and mycelial loops. In addition, the absence of Aomae1 also caused an obvious reduction in the number of septa and nuclei. In particular, AoMae1 regulates hyphal fusion under low nutrient conditions but not in nutrient-rich conditions, and the volumes and sizes of the lipid droplets dynamically changed during trap formation and nematode predation. AoMae1 is also involved in the regulation of secondary metabolites such as arthrobotrisins. These results suggest that Aomae1 has an important role in hyphal fusion, sporulation, energy production, trap formation, and pathogenicity in A. oligospora. Our results enhance the understanding of the crucial role that enzymes involved in the TCA cycle play in the growth, development, and pathogenicity of NT fungi.

17.
RSC Adv ; 13(5): 2746-2755, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756406

ABSTRACT

The process of nucleation and growth of polypropylene foam was observed by using visualizations of the mold-opening foam injection molding (MOFIM) and free foaming (FREEF). The fitting of the mathematical model formula was used to supplement the judgment conditions of the secondary bubbles to explore the generation process and formation conditions of the secondary bubbles. The results of changes in blowing agent content and melt temperature proved the rationality of the judgment basis and the appearance of secondary bubbles started from the late stage of balanced-foaming. Then, the combined action of several nucleation mechanisms led to the emergence of secondary bubbles, which was observed utilizing glass fibers as nucleating agents and tracers. The data for the two foaming modes indicated that the formation of secondary bubbles is closely related to temperature and pressure drop. The bubble nucleation model was amended and validated by regulating the temperature variation in the mold cavity to control the number of secondary bubbles, which enabled the nucleation process of secondary bubbles to be fitted to an "S-shaped" curve. Finally, a controllable number of secondary bubbles was obtained from the bimodal bubble structure. Herein, this study enriches our understanding of the formation process of secondary bubbles, and provides theoretical guidance for fabricating high density, small size foam materials.

18.
Expert Opin Drug Discov ; 18(3): 347-356, 2023 03.
Article in English | MEDLINE | ID: mdl-36852432

ABSTRACT

OBJECTIVES: Cathepsin L (CTSL) is a promising therapeutic target for metabolic disorders and COVID-19. However, there are still no clinically available CTSL inhibitors. Our objective is to develop an approach for the discovery of potential reversible covalent CTSL inhibitors. METHODS: The authors combined Chemprop, a deep learning-based strategy, and the Schrödinger CovDock algorithm to identify potential CTSL inhibitors. First, they used Chemprop to train a deep learning model capable of predicting whether a molecule would inhibit the activity of CTSL and performed predictions on ZINC20 in-stock librarie (~9.2 million molecules). Then, they selected the top-200 predicted molecules and performed the Schrödinger covalent docking algorithm to explore the binding patterns to CTSL (PDB: 5MQY). The authors then calculated the binding energies using Prime MM/GBSA and examined the stability between the best two molecules and CTSL using 100ns molecular dynamics simulations. RESULTS: The authors found five molecules that showed better docking results than the well-known cathepsin inhibitor odanacatib. Notably, two of these molecules, ZINC-35287427 and ZINC-1857528743, showed better docking results with CTSL compared to other cathepsins. CONCLUSION: Our approach enables drug discovery from large-scale databases with little computational consumption, which will save the cost and time required for drug discovery.


Subject(s)
COVID-19 , Deep Learning , Humans , Cathepsin L , Drug Discovery , Zinc
19.
Microbiol Spectr ; : e0395722, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786575

ABSTRACT

Nematode-trapping (NT) fungi are a unique group of carnivorous microorganisms that can capture and digest nematodes by producing ingenious trapping devices (traps). Arthrobotrys oligospora, a representative NT fungus, can develop adhesive three-dimensional networks for nematode predation. Hyphal fusion is indispensable for the trap formation of A. oligospora. Here, we characterized an orthologous Ste12 protein (AoSte12) in A. oligospora via gene disruption, DNA affinity purification sequencing (DAP-Seq), and multi-omics approaches. The disruption of the Aoste12 gene caused an increase in hyphal fusion and resulted in defects in mycelial growth, conidiation, trap morphology, and stress resistance, as well as reducing the number of nuclei and lipid droplet accumulation. Moreover, transcriptome and DAP-Seq analysis revealed that AoSte12 was involved in cellular processes associated with growth, cell fusion, the tricarboxylic acid cycle, vesicles, actin filaments, and lipid metabolism. In addition, combining metabolome with transcriptome and DAP-Seq analysis indicated that AoSte12 was involved in the mitogen-activated protein kinase signaling pathway, lipid metabolism, and secondary metabolites. A yeast two-hybrid assay revealed that AoSte12 can interact with diverse proteins, such as the MAK-2 orthologue protein Fus3, the vacuolar sorting protein Pep3, and UDP-glycosyltransferase. Our results suggest that AoSte12 plays an indispensable role in hyphal fusion and thus regulates sporulation and trap morphogenesis. These results provide deep insights into the connection between hyphal fusion and trap formation in NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are an important natural enemy of nematodes and can capture their prey by producing traps. Hyphal anastomosis and fusion are important for mycelial growth and the colony morphological development of filamentous fungi and are also crucial for the trap morphogenesis of NT fungi. Arthrobotrys oligospora can form complex three-dimensional networks (traps) when sensing the presence of nematodes. This study revealed that AoSte12 is indispensable for hyphal fusion and that it regulates mycelial growth, conidiation, trap morphogenesis, stress resistance, the number of nuclei, and lipid droplet accumulation in A. oligospora. In addition, DNA affinity purification sequencing, transcriptome, and metabolome analyses further revealed that AoSte12 is involved in the mitogen-activated protein kinase pathway, lipid metabolism, and secondary metabolism. Overall, these findings expand the important role of AoSte12 in NT fungus A. oligospora and provide a broad foundation for elucidating the regulatory mechanism of trap development and the lifestyle transitions of pathogenic fungi.

20.
mSphere ; 8(2): e0001223, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36786584

ABSTRACT

The peroxins encoded by PEX genes involved in peroxisome biogenesis play a crucial role in cellular metabolism and pathogenicity in fungi. Herein, we characterized a filamentous fungus-specific peroxin Pex14/17 in the Arthrobotrys oligospora, a representative species of nematode-trapping fungi. The deletion of AoPEX14/17 resulted in a remarkable reduction in mycelial growth, conidia yield, trap formation, and pathogenicity. Compared with the wild-type strain, the ΔAopex14/17 mutant exhibited more lipid droplet and reactive oxygen species accumulation accompanied with a significant decrease in fatty acid utilization and tolerance to oxidative stress. Transcriptomic analysis indicated that AoPEX14/17 was involved in the regulation of metabolism, genetic information processing, environmental information processing, and cellular processes. In subcellular morphology, the deletion of AoPEX14/17 resulted in a decrease in the number of cell nuclei, autophagosomes, and Woronin bodies. Metabolic profile analysis showed that AoPex14/17 affects the biosynthesis of secondary metabolites. Yeast two-hybrid assay revealed that AoPex14/17 interacted with AoPex14 but not with AoPex13. Taken together, our results suggest that Pex14/17 is the main factor for modulating growth, development, and pathogenicity in A. oligospora. IMPORTANCE Peroxisome biogenesis genes (PEX) play an important role in growth, development, and pathogenicity in pathogenic fungi. However, the roles of PEX genes remain largely unknown in nematode-trapping (NT) fungi. Here, we provide direct evidence that AoPex14/17 regulates mycelial growth, conidiation, trap formation, autophagy, endocytosis, catalase activity, stress response to oxidants, lipid metabolism, and reactive oxygen species production. Transcriptome analysis and metabolic profile suggested that AoPex14/17 is involved in multiple cellular processes and the regulation of secondary metabolism. Therefore, our study extends the functions of PEX genes, which helps to elucidate the mechanism of organelle development and trap formation in NT fungi and lays the foundation for the development of efficient nematode biocontrol agents.


Subject(s)
Ascomycota , Nematoda , Animals , Secondary Metabolism , Reactive Oxygen Species/metabolism , Nematoda/microbiology , Ascomycota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...